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ABSTRACT

A key goal of heliophysics is to understand how cosmic rays propagate in the solar system’s complex,

dynamic environment. One observable is solar modulation, i.e., how the flux and spectrum of cosmic

rays changes as they propagate inward. We construct an improved force-field model, taking advantage

of new measurements of magnetic power spectral density by Parker Solar Probe to predict solar mod-

ulation within the Earth’s orbit. We find that modulation of cosmic rays between the Earth and Sun

is modest, at least at solar minimum and in the ecliptic plane. Our results agree much better with the

limited data on cosmic-ray radial gradients within Earth’s orbit than past treatments of the force-field

model. Our predictions can be tested with forthcoming direct cosmic-ray measurements in the inner

heliosphere by Parker Solar Probe and Solar Orbiter. They are also important for interpreting the

gamma-ray emission from the Sun due to scattering of cosmic rays with solar matter and photons.

1. INTRODUCTION

How do charged cosmic rays propagate in dynamic

magnetic environments? Despite decades of work, the

uncertainties remain large. This is true even for the so-

lar system, where we have rich auxiliary data. Getting

good agreement between theory and observation here

is a prerequisite for understanding more distant astro-

physical systems. It will also lead to better probes of the

Sun’s magnetic fields and how those and cosmic rays af-

fect Earth, spacecraft, and the solar system itself.
In the solar system, as galactic cosmic rays (GCR)

diffuse inward, they are increasingly affected by solar

modulation, which reduces their energy and intensity.

This is caused by the GCR undergoing interactions with

magnetic fluctuations in the solar wind as the wind con-

vects outward. The strength of the modulation varies

over the solar cycle, being less at solar minimum. The

foundational data for modulation studies is the collec-

tion of GCR spectra at Earth (Asakimori et al. 1998;

Boezio et al. 2000; Sanuki et al. 2000; Adriani et al. 2013;

Aguilar et al. 2014; Adriani et al. 2015; Aguilar et al.

2015a,b; Abe et al. 2016; Abdollahi et al. 2017; Ambrosi

et al. 2017; Marcelli et al. 2020), which are well measured
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for many species over wide energy ranges. To determine

the incoming GCR spectra, these data are compared to

less precise but crucial measurements made throughout

the outer solar system, including with Voyager 1 and 2

out to the heliospheric boundary at ≈ 100 AU (Gurnett

et al. 2013; Stone et al. 2013; Webber & McDonald 2013;

Cummings et al. 2016).

There are new opportunities to probe GCR at the

opposite extreme: the inner solar system, which has

barely been explored. Direct probes of GCR spectra

will soon be provided by the US-led Parker Solar Probe

(PSP) (Fox et al. 2016), which will reach < 10 solar

radii (< 0.047 AU) and the European-led Solar Orbiter

(SolO) (Müller et al. 2020), which will reach 60 solar

radii (0.279 AU). Together, they will probe energies of

' 10–200 MeV for hadronic GCR (McComas et al. 2016;

Wimmer-Schweingruber et al. 2021).

Indirect probes are provided by the gamma rays pro-

duced by GCR interactions with the Sun (Seckel et al.

1991; Moskalenko et al. 2006; Orlando & Strong 2007,

2008; Abdo et al. 2011; Ng et al. 2016; Zhou et al.

2017; Tang et al. 2018; Linden et al. 2018; Mazziotta

et al. 2020; Li et al. 2020; Linden et al. 2022). The

dominant emission from the solar disk (θ < 0.25◦) is

caused by hadronic GCR interacting with matter in the

photosphere. The dominant emission from the solar

halo (θ . 20◦) is caused by electron GCR interacting
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with photons out to ' 1 AU from the Sun. These

data are sensitive to GCR over a wide range (so far,

' 1–1000 GeV), but what they reveal about the Sun is

clouded by uncertainties about their modulation in the

inner solar system.

Predictions of the GCR spectra in the inner helio-

sphere are thus urgently needed. Most of the numeri-

cal solutions of Parker’s transport equation focus on re-

producing GCR spectra at Earth’s orbit and the outer

solar system (Bobik et al. 2013; Qin & Shen 2017; Bos-

chini et al. 2018; Aslam et al. 2019; Bisschoff et al. 2019;

Moloto & Engelbrecht 2020; Aslam et al. 2021). The

little work that has been done for the inner solar sys-

tem uses the force-field model to calculate solar modu-

lation (Moskalenko et al. 2006; Orlando & Strong 2008;

Abdo et al. 2011; Linden et al. 2022). The force-field

model is a 1-dimensional diffusion-convection equation

in the stationary solar system frame (Gleeson & Ax-

ford 1967, 1968a). It is parameterized by the force-field

modulation potential energy Φ, with higher Φ corre-

sponding to stronger modulation. It is often assumed

that the mean free path is linearly proportional to par-

ticle rigidity, which leads to the modulation potential

energy being rigidity-independent. Under this form of

modulation potential energy, it has been shown that the

force-field model can simply quantify the variability of

solar modulation in time, which has practical applica-

tions in studies of atmospheric ionization, radiation en-

vironment, and radionuclide production (Usoskin et al.

2005, 2017). A particular rigidity-dependent form of the

modulation potential energy was discussed in Gleeson &

Urch (1971), Urch & Gleeson (1972a), Urch & Gleeson

(1972b), and Urch & Gleeson (1973) for evaluating the

solar modulation of low-energy GCR in the outer solar

system.

However, the force-field model is known to have short-

comings. For example, 3-dimensional particle drifts and

the heliospheric current sheets are not considered, lim-

iting the model’s ability to determine the latitudinal de-

pendence of the GCR distribution. In addition, a force-

field model does not provide good predictions for the

GCR spectra in the outer heliosphere (Caballero-Lopez

& Moraal 2004). Ultimately, full numerical calculations

of the cosmic-ray transport equation are required. Un-

til then, approximations are needed for rapid, accessible

use.

In this paper, we develop an improved version of the

force-field model, now taking into account the radial evo-

lution of the turbulence in the inner heliosphere and the

rigidity dependence of the modulation potential energy.

This is made possible by using PSP magnetometer data

that reveal the power spectral density (PSD) of mag-

netic fluctuations, which have been measured down to

0.17 AU for the first time (Chen et al. 2020). In short,

the behavior of the magnetic PSD measured by PSP is

different from naive considerations in which the mod-

ulation potential energy is rigidity-independent. Ulti-

mately, we find that GCR modulation in the inner solar

system is very modest, i.e., that the spectra are close

to those measured at Earth. This agrees with earlier

hints from Helios, Pioneer, and MESSENGER (McDon-

ald et al. 1977; Marquardt & Heber 2019; Lawrence et al.

2016), which had limited data.

The rest of the paper is organized as follows. In Sec-

tion 2, we review the theoretical framework for GCR

propagation in the solar system. In Section 3, we de-

velop our new calculation of the diffusion coefficients and

modulation potential energies for the inner solar system.

In Section 4, we calculate the numerical results for the

predicted GCR intensities and compare the calculated

and measured GCR radial gradients. In Section 5, we

conclude and discuss next steps.

2. OVERVIEW OF THE FORCE-FIELD MODEL

In this section, we discuss the force-field model, its

limitations, and paths to improvement. In Section 2.1,

we discuss the general case of cosmic-ray transport in in-

terplanetary space. In Section 2.2, we review the deriva-

tion of the force-field solution and its associated charac-

teristic equation. In Section 2.3, we present the rigidity-

independent modulation potential energy approach used

in the solar gamma-ray literature. In Section 2.4, we

discuss why the rigidity-dependent modulation potential

energy leads to a more accurate force-field model.

2.1. Cosmic Ray Transport Equation

GCR entering the solar system scatter from magnetic

irregularities in the solar wind and random-walk through
interplanetary space as the wind expands outward from

the Sun. In addition, cosmic rays experience gradient

and curvature drifts due to the inhomogeneity of the

large-scale interplanetary magnetic fields (IMF). The

equation that describes cosmic-ray transport and solar

modulation in the heliosphere is (Parker 1965; Gleeson

& Webb 1978)

∂Up
∂t

+ ∇ · (CVswUp)−∇ · (κ ·∇Up)

+ 〈vD〉 ·∇Up +
1

3

∂

∂p
(pVsw ·∇Up) = 0,

(1)

where the frame of reference is fixed in the solar sys-

tem. Here, p is the particle momentum, Up is the dif-

ferential number density of cosmic rays with respect to

p, Vsw is the solar wind velocity, κ is the the second-

rank diffusion tensor, 〈vD〉 is the drift velocity, and
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C = 1− 1
3Up

∂(pUp)
∂p is the Compton-Getting factor (Glee-

son & Axford 1968b). The differential number density

Up is related to the differential intensity (flux per solid

angle) JE (with respect to particle total energy E) by

Up = 4πJE .

There is a vast literature developing numerical mod-

els and solutions of the transport equation. The first 3-

dimensional transport calculation, including the effects

of diffusion, drift, and heliospheric current sheets, was

developed by Kota & Jokipii (1983). The most recent

developments include Qin & Shen (2017), who consider

the diffusion coefficients from nonlinear guiding center

theory as well as the latitudinal and radial dependence

of magnetic turbulence. Boschini et al. (2018) adopt a

modified IMF in the polar region in their 2-dimensional

Monte Carlo code. Bisschoff et al. (2019) consider the

empirical models of diffusion and drift coefficients fit-

ting the observed GCR spectra from PAMELA and Voy-

ager 1.

In general, these numerical models provide state-of-

the-art analyses. However, these models are not publicly

available and are complicated to construct. In addition,

predictions from these models for GCR spectra in the in-

ner heliosphere (within 1 AU from the Sun) are not yet

available. Nevertheless, we consider their approach as a

complete treatment for GCR modulation. Our improved

force-field treatment is intended to provide a simple, yet

reasonable, approximation for evaluating the inner he-

liosphere GCR intensity. We encourage new calculations

with numerical models for the inner solar system.

2.2. Force-Field Model

The force-field model derived by Gleeson & Axford

(1967, 1968a); Gleeson & Urch (1973) is widely used

due to its simplicity and inclusion of energy loss. It be-

gins from the cosmic-ray transport equation in the solar-

system frame, as shown in Equation (1), and assumes

that (i) transport reaches a steady state, (ii) there is no

source or sink of GCR in the heliosphere, (iii) propaga-

tion is spherically symmetric, and (iv) particle drift is

not considered. The 1-dimensional force-field equation

is obtained by demanding the convection flux balance

the diffusion flux in the radial direction, which yields

κrr
∂Up
∂r

+
1

3
Vsw p

3 ∂

∂p

(
Up
p2

)
= 0, (2)

where κrr is the (r, r) component of κ, which depends

on E and r. The solution of Equation (2) is a con-

stant Up/p
2 along a phase-space contour line following

the characteristic equation dp/dr = Vswp/3κrr. Pre-

sented in terms of E and JE , the solution that connects

the GCR intensity at the heliocentric radius r1 to that

at r2 > r1 is

JE (E, r1)

E2 − E2
0

=
JE (E + ∆Φ, r2)

(E + ∆Φ)
2 − E2

0

, (3)

where ∆Φ is defined as the energy change of the particle

from r1 to r2, obtained from the characteristic equation,

which is
dE

dr
=

Vsw

3κrr

(
E2 − E2

0

)
E

, (4)

with E0 denoting the rest mass energy of the particle.

2.3. Rigidity-Independent Modulation Potential Energy

Previous work on the gamma-ray emission from the

solar halo required the intensity of GCR electrons near

the Sun (Moskalenko et al. 2006; Orlando & Strong

2008; Abdo et al. 2011; Linden et al. 2022). They

adopted the force-field model with an assumption that

κrr ∼ Rv rη, where R is particle rigidity, v is parti-

cle speed, and η ranges from 1.1 to 1.4 for the entire

heliosphere. Integrating Equation (4), they obtained a

rigidity-independent form of Φ as

Φ (r) =
Ze

3

∫ rb

r

Vsw

κrr/ (Rv)
dr′, (5)

where Φ is set to zero at the heliospheric boundary, rb ≈
100 AU. They expressed the rigidity-independent Φ in

Equation (5) as

Φ (r) = Φ1AU
r1−η − r1−η

b

(1 AU)
η−1 − rη−1

b

, (6)

assuming a constant Vsw.

2.4. Rigidity-Dependent Modulation Potential Energy

The choice of κrr ∝ R in Equation (5) could overes-

timate solar modulation effects. As we demonstrate in

Section 3, a more realistic magnetic turbulence condi-

tion would show that κrr varies as R1/3 to R1/2 at low

GCR energies and as R at high energies. In particular,

low-energy GCR do not experience as much solar modu-

lation as in the case in Section 2.3, where κrr is assumed

to vary as R.

The term Φ1AU is the accumulated result of solar mod-

ulation from the heliospheric boundary to 1 AU, which

we discuss further below.

3. MODULATION POTENTIAL ENERGY IN

INTERPLANETARY SPACE

In this section, we present our improved approach for

evaluating solar modulation in the force-field model. In

Section 3.1, we describe general role of the magnetic

PSD in determining κrr in the inner heliosphere. In
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Section 3.2, we formulate the functional form of the

magnetic PSD from the PSP measurements. In Sec-

tion 3.3, we lay out the GCR diffusion model from the

quasi-linear theory (QLT). In Section 3.4, we show the

numerical results for the diffusion coefficients. In Sec-

tion 3.5, we calculate the modulation potential energy

from κrr. In the conclusions, we discuss the modulation

potential energies associated with GCR propagation in

the turbulent environment.

Limited by PSP ’s orbits and the operation time so far,

we only consider the following conditions in our analy-

sis: (1) GCR modulation in the solar ecliptic plane and

(2) during the solar minimum. Furthermore, because

we only take into account the IMF for the local mean

magnetic field, our predictions go down only to 0.1 AU.

We do not consider the solar modulation in the coronal

magnetic fields within ∼ 0.05 AU from the Sun.

3.1. GCR Diffusion in the Inner Heliosphere

Due to the large-scale IMF, κrr is spatially

anisotropic. Locally, the GCR diffusion coefficient is

separated into components parallel (κ‖) and perpen-

dicular (κ⊥) to the mean value of local IMF, respec-

tively. At different locations in the solar ecliptic plane,

κrr = κ‖ cos2 ψ + κ⊥ sin2 ψ, where ψ, known as the

Parker spiral angle, is the angle between the IMF and

the heliocentric radius vector. (The value of ψ at 1 AU

is ∼ 45◦.) According to the numerical simulation in Gi-

acalone & Jokipii (1999), κ⊥/κ‖ ' 0.025 for a represen-

tative of IMF. Using this value, it is easy to show that

κ⊥ sin2 ψ > κ‖ cos2 ψ for ψ & 81◦ (or r & 5 AU). As

a result, force-field modulation at the outer heliosphere

is dominated by perpendicular diffusion, while in the

inner heliosphere, it is dominated by parallel diffusion.

Since we focus on modulation within 1 AU where per-

pendicular diffusion is negligible, we neglect κ⊥ sin2 ψ

and approximate κrr as κ‖ cos2 ψ.

To calculate κ‖, we need to know the PSD of the

magnetic fluctuations (we show the formalism in Sec-

tion 3.3). This is because diffusion parallel to the mean

magnetic field is caused by GCR resonant interactions

with magnetic fluctuations. The stronger the magnetic

fluctuations, the harder it is for particles to diffuse, and

hence the lower κ‖ is. For this purpose, we adopt PSP ’s

measurement from Chen et al. (2020) to describe the

magnetic PSD in the inner-heliosphere solar wind, as

shown in Section 3.2.

3.2. Turbulence Spectrum

The observed temporal PSD of the magnetic fluctu-

ations for frequency f and at a heliocentric distance

r in the solar ecliptic plane is defined as the Fourier-

transform of the two-time correlation of the fluctuating
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Figure 1. Schematic diagram of the trace magnetic PSD
and frequency break. In the inertial range, the trace PSD
is dominated by the perpendicular turbulence which scales
as f−3/2 to f−5/3. For a reference, we also draw the PSD
of the parallel turbulence, which scales as f−2. The grey
dotted line is the extension of the 1/f power law to higher
frequencies to contrast the change in the inertial range.

magnetic fields δB. It is expressed in tensor form as

PB,ij (f, r) =

∫ ∞
−∞
〈δBi (r, t) δBj (r, t+ τ)〉e−2πifτdτ,

(7)

where t and t + τ refer to two different times. (The

connection between PB,ij and κrr will be given in the

next subsection.) The matrix trace of PB,ij (f, r) within

1 AU is theoretically expected to show three distinct

power laws. The low-frequency region, called the “1/f

range,” is a f−1 power law. The middle-frequency re-

gion, called the “inertial range,” is a f−3/2 to f−5/3

power law, depending on the magnetic conditions. The

high-frequency region, called the “kinetic range,” varies

as f−2.3 or steeper. These three power laws have been

identified in earlier data from Ulysses, Helios I, Wind,

and MESSENGER down to 0.3 AU (Bruno & Carbone

2013; Telloni et al. 2015), but PSP will provide precise

measurements of the changes of spectral shape and total

energy of PSD along its trajectory down to 0.047 AU.

We adopt the early PSP measurements from Chen

et al. (2020) to describe the observed PSD of the mag-

netic fluctuations in the solar wind. Their data were

taken from 2018 October 6 to 2019 April 18, correspond-

ing to the solar minimum at the end of the Solar Cycle
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24. The heliocentric distance that PSP traveled during

this period ranged from 0.17 AU to 0.82 AU.

Figure 1 illustrates their key findings about the spec-

trum. They are (i) the magnitude of matrix trace of

the PSD, (ii) a f−1 power law from 2 × 10−5 Hz up

to the frequency break fb, (iii) an fb that shifts to

lower frequencies at greater heliocentric distances, (iv)

the spectral shape of the inertial-range turbulence at

10−3 Hz . f . 10−1 Hz, and (v) a f−3/2 power law for

the trace PSD at r ≈ 0.17 AU and a gradual transition

to f−5/3 at r ≈ 0.6 AU and beyond.

To simplify the analysis of the force-field model, we

formulate the functional forms of the magnetic PSD

from Chen et al. (2020) with additional approximations

and assumptions.

1. For the 1/f range, we approximate their trace

PSD at r = 0.82 AU as approximately 2.46 nT2/f .

The turbulence evolution in this range is de-

scribed by the WKB approximation and scales as

r−3 (Hollweg 1973; Bavassano et al. 1982; Marsch

& Tu 1990). This allows us to express the trace

PSD in this range as

∑
i=j

PB,ij (f, r) =
2.46 nT2

f
×
( r

0.82 AU

)−3

, (8)

where i = R,T,N are the solar ecliptic coordi-

nates, with R in the direction outward from the

Sun in the solar ecliptic plane, N normal to that

plane, and T perpendicular to R and N. In this

plane, N is normal to the mean magnetic field 〈B〉.
(Here to obtain 2.46 nT2/f , we digitize the PSD

plot in their Figure 1. Because the curves in the

1/f range fluctuate a lot, we picked the mean value

of the curves.)

2. For the frequency break fb, we deduce it from their

radial dependence of the break timescale τb ∝ r1.12

with τb ≈ 4.71 × 103 sec at r = 0.68 AU. This

allows us to write the functional form of fb ≡ 1/τb
separating the 1/f range and the inertial range as

fb = 2.12× 10−4 Hz×
( r

0.68 AU

)−1.12

. (9)

3. For the inertial range, the magnetic field spectral

index is ν ≈ −3/2 at r = 0.17 AU and gradually

shifts to ν ≈ −5/3 at r = 0.6 AU. We approximate

their result of ν as linear to ln r and thus express

ν as

ν (r) ≈ −1.5− 0.135 ln
( r

0.17 AU

)
, (10)

for 0.17 AU ≤ r ≤ 0.6 AU. Within 0.17 AU and

beyond 0.6 AU, we assume ν to be −3/2 and −5/3,

respectively.

In addition to the PSP measurements from Chen et al.

(2020), we use three other earlier results. First, Wicks

et al. (2010) analyzed the low-frequency turbulence of

the solar wind from Ulysses data and showed that the

1/f fluctuations are nearly isotropic. This finding allows

us to approximate PB,NN (f, r) in the 1/f range as

PB,NN (f, r) =
1

3

∑
i=j

PB,ij (f, r) . (11)

For f > fb, the power law of PB,NN (f, r) follows the

spectral-index approximation in Equation (10). As dis-

cussed in Section 3.3, PB,NN (f, r) governs the diffusivity

of GCR parallel to 〈B〉.
Second, Sahraoui et al. (2009) analyzed the high-

frequency turbulence of the solar wind from Cluster data

and showed that the inertial range terminates at the

Doppler-shifted proton gyroscale, fρp ≡ Vsw/ (2πρp),

with ρp as the thermal proton gyroradius of the solar

wind. Above fρp, MHD turbulence enters the kinetic

range, at which the magnetic power spectra varies as

f−2.3 or steeper. Because of the weak magnetic power,

we neglect scattering in the kinetic range. To calculate

ρp at different r in the inner heliosphere, we adopt the

analytical fit of the thermal proton temperature of the

solar wind from Cranmer et al. (2009).

Third, we emphasize that the f−1 power law does

not extend to arbitrarily low frequencies. Chen et al.

(2020) provides a PSD with a f−1 power law down to

2×10−5 Hz. Matthaeus & Goldstein (1986) have shown

that this scaling at 1 AU only extends to ∼ 2×10−6 Hz,

below which the spectra become flatter than f−1. How-
ever, there are not enough data for us to properly model

the PSD below this frequency range. We thus do not

consider the GCR interactions with waves in this fre-

quency range. As a result, we assume that the trace

PSD in the 1/f range in Equation (8) is valid for

f > 2 × 10−6 Hz. Within 1 AU from the Sun and dur-

ing the low solar activity cycle, magnetic fluctuations

of f & 2 × 10−6 Hz resonantly interact with particles

of T . 40 GeV. Therefore, our analysis is strictly only

valid for T . 40 GeV. At higher energies, however, the

modulation is negligible anyway.

3.3. Parallel Diffusion Model

In a weak turbulent plasma where particle relaxation

is slow compared to particle gyration, the mean evolu-

tion of the particle distribution along the mean mag-

netic field can be described by QLT. According to this
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theory, the relation between the spatial diffusion co-

efficient parallel to the mean magnetic field, κ‖, and

the pitch angle diffusion coefficient, Dµµ, in a magne-

tostatic, dissipationless turbulence with slab geometry

is given by (Jokipii 1966, 1968; Voelk 1975; Luhmann

1976)

κ‖ (v, r) =
v2

4

∫ 1

µmin,s

(
1− µ2

)2
Dµµ

dµ, (12)

where

Dµµ =
1− µ2

2|µ|v

(
Ω0,s

|〈B〉|

)2

Vsw (r)PB,xx (f, r) . (13)

Here, v is the particle speed, µ = v‖/v is the cosine of

the pitch angle, Ω0,s is the gyrofrequency of GCR of the

species s, f ≈ VswΩ0,s/ (2πµv) is the frequency of the

hydromagnetic waves that GCR of the species s at pitch-

angle cosine µ resonantly interact with, and the sub-

script “x” of PB,xx (f, r) is one of the directions normal

to the mean magnetic field 〈B〉. Because the N direc-

tion at the solar ecliptic plane is perpendicular to 〈B〉,
we have PB,xx (f, r) = PB,NN (f, r). In Equation (12),

µmin,s is set at where the resonant frequency of the

species s, VswΩ0,s/ (2πµv), equals fρp. In Equation (13),

Taylor’s hypothesis (Taylor 1938) has been used to con-

vert the wavenumber k to f through f = kVsw/2π.

The assumption of using Taylor’s hypothesis near the

Sun is expected to remain a good approximation if the

sampling angle, defined as the angle between the space-

craft’s motion and the the local magnetic field, is greater

than 30◦ (Perez et al. 2021). At 0.1–0.3 AU, PSP

moves nearly perpendicular to the local magnetic field,

and thus we can use Taylor’s hypothesis to reconstruct

the spatial energy spectra from the measured frequency

spectra. Far away from the Sun where the solar wind

speed is much larger than the root-mean-square speed

of the fluid and the Alfvén speed, Taylor’s hypothesis is

valid regardless of the sampling angle.

To determine κ‖ at different locations in the helio-

sphere, we need to know the profiles of 〈B〉 and Vsw

as functions of r. First, we adopt Parker’s Archimedean

spiral magnetic field model for 〈B〉 (i.e., the IMF), which

gives (Parker 1958),

〈B〉 = ABr (r)

[
êr − êφ

(r − r�) Ω� sin θ

Vsw (r)

]
. (14)

Here, A is the sign of the solar polarity, r� ≈ 6.96 ×
1010 cm is the solar radius (throughout the text, we

use lower-case r� to denote the solar radius), Br (r) =

2.83 nT × (r/AU)
−2

is the radial component of the

Archimedean magnetic field at solar minimum, Ω� ≈

2.97×10−6 rad/s is the solar rotation speed, and (r, θ, φ)

are the spherical coordinates relative to Sun’s rotation

axis. Our choice of Br (1 AU) = 2.83 nT is taken from

the mean radial magnetic field strength measured by

Ulysses’ first full polar orbit during the low solar activity

period (McComas et al. 2000). This choice of Br leads

to the total magnetic field at 1 AU at the solar ecliptic

being ≈ 4.23 nT, which agrees with the measurements

at solar minimum in the past few solar cycles (Balogh

et al. 1993; Gopalswamy et al. 2015; Kilpua et al. 2017).

With the IMF given in Equation (14), we write the

Parker spiral angle ψ in the solar ecliptic plane as

ψ (r) = tan−1

[
(r − r�) Ω�
Vsw (r)

]
. (15)

For the solar wind speed, we adopt the empirical

model from Heber & Potgieter (2006) which expresses

Vsw along the solar ecliptic plane as

Vsw (r) = V0

[
1− exp

(
40

3

(
r� − r
1 AU

))]
, (16)

with V0 = 400 km/s. This model agrees well with the

observations from SOHO showing the wind in the eclip-

tic plane typically accelerates from the rest to 300 km/s

at 25 r� to its maximum speed of 400 km/s at 0.3 AU,

after which the speed remains nearly constant (Sheeley

et al. 1997).

3.4. Parallel Diffusion Results

Figure 2 shows our numerical results of κ‖ (top left)

and particle mean free path λ‖ = 3κ‖/v (top right) as a

function of r. The solid lines are for to GCR protons and

the dashed lines are for to GCR electrons. The blue line

in the right plot is where λ‖ equals the characteristic size

of the system, r. For T & 33 GeV, we have λ‖ > r, so the

normal diffusion approximation of the particle transport

is not valid. Combining this point with the constraint

due to the lack of accurate PSD measurements below

2 × 10−6 Hz, we consider our analysis as strictly valid

for T . 33 GeV, which is adequate because modulation

at higher energies is small.

In Figure 2, it is interesting that protons and electrons

have essentially the same κ‖ for T & 10 GeV. This is

because the resonant frequency, f ≈ VswΩ0,i/2πµv, is

linearly proportional to R/v and thus becomes indepen-

dent of the rest masses of the proton and electron, mp

and me, whenever T � mpc
2, mec

2. At low energies,

however, protons and electrons with the same T have

different κ‖. In particular, we see that at T = 0.1 GeV,

κ‖ for a relativistic electron is larger than κ‖ for a non-

relativistic proton. The reason is two-fold: First, κ‖ is

an increasing function of v. Second, the R of electrons is
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Figure 2. Parallel diffusion coefficient (left), κ‖, and parallel mean free path (right), λ‖, as a function of heliocentric distance
r for various particle kinetic energies, T . The blue line in the right plot is where λ‖ = r; above this line (approximately for
T & 33 GeV), the diffusion description of the cosmic-ray transport in the inner heliosphere is not strictly valid.
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Figure 3. Parallel diffusion coefficient of protons (left) and electrons (right) as a function of kinetic energy T for heliocentric
distances between 0.1 AU and 1 AU, spaced in intervals of 0.1 AU. The open circles and upward-pointing triangles are derived
from the actual and lower-limit values of the measurements of λ‖ at the heliocentric distance of 1 AU, respectively.

lower than the R of protons provided they have the same

T ; this indicates that an electron resonantly scatters a

slightly smaller PSD than a proton does.

Figure 3 shows κ‖ for GCR protons (bottom left) and

electrons (bottom right) as a function of T . The low

energy (. 1 GeV) and the high energy (& 10 GeV)

regimes have different slopes because GCR at these

two different energy regimes resonantly interact with

different types of magnetic turbulence. QLT suggests

that κ‖ for the relativistic particles in Equation (12)

should vary as R2+ν for a magnetic power spectrum

that varies as kν . For a Kolmogorov-like, Pxx ∝ k−5/3,

and an Iroshnikov-Kraichnan-like, Pxx ∝ k−3/2 (Irosh-

nikov 1964; Kraichnan 1965), Alfvén wave turbulence,
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Figure 4. Calculated growth of the rigidity-dependent Φ (solid lines) from 1 AU to radii r between 0.1 AU and 0.9 AU in steps
of 0.1 AU. As a comparison, we show the growth of the rigidity-independent Φ for r = 0.1 AU (top dashed line) and r = 0.9 AU
(bottom dashed line).

κ‖ varies as R1/3 and R1/2, respectively, as shown in the

low energy regime. For a 1/f fluctuation (Pxx ∝ k−1),

κ‖ varies as R, as shown in the high-energy regime.

In the left plot of Figure 3, the data points are ob-

tained from the measurements of λ‖ at r = 1 AU

summarized in Palmer (1982) and Bieber et al. (1994).

Specifically, these data are reported in Schulze et al.

(1977), Ford et al. (1977), Zwickl & Webber (1978),

Bieber & Pomerantz (1983), Bieber et al. (1986), Beeck

et al. (1987), and Chen & Bieber (1993). We see that

for 1 GeV < Tp < 20 GeV, the theory prediction at

r = 1 AU is at least a factor 2 smaller than the data

points. While we do not show it here, the discrepancy

is even larger at Tp . 0.1 GeV where the theory pre-

diction can be smaller than the data points by a factor

' 10. The measurements of electron λ‖ also show sim-

ilar discrepancies at Te . 10 GeV. This issue, known

as the Palmer consensus, is reported in Palmer (1982).

The Palmer consensus indicates that the true cosmic-ray

interaction with magnetic turbulence in the inner helio-

sphere is weaker than the predictions from the standard

QLT in a magnetostatic, dissipationless turbulence with

slab geometry (Jokipii 1966).

Throughout this paper, we still use the standard QLT

treatment in Equations (12) and (13) to derive κ‖ un-

less otherwise specified. We note that because realis-

tic cosmic-ray scattering with magnetic turbulence is

weaker than the QLT-predicted values, the true mod-

ulation is likely smaller than that derived in this work.

3.5. Modulation Potential Energy

We calculate the growth of the modulation potential

energy, ∆Φ ≡ Φ (r)− Φ (1 AU), from 1 AU to inner he-

liospheric radii r by applying the numerical results of κ‖
in the force-field characteristic equation in Equation (4).

We note that ∆Φ is positive because smaller r has larger

Φ.

Figure 4 shows the calculated ∆Φ (solid lines) for

GCR protons and GCR electrons. At T . 10 GeV,

∆Φ for each r is an increasing function of T , and GCR

at this energy range have small enough gyro-radii that

they pitch-angle scatter with the inertial-range turbu-

lence. At 10 GeV . T . 33 GeV, ∆Φ for each r reaches

a plateau and becomes rigidity- (or energy-) indepen-

dent because GCR in this energy range predominantly

pitch-angle scatter with the 1/f fluctuations. Since the

magnetic power in the 1/f range is higher than the

power in the inertial range, scattering with 1/f fluc-

tuations results in a stronger solar modulation, as evi-

denced from the trend of the solid lines. We note again

that at T & 33 GeV, our analysis does not hold be-

cause (i) the spectral shape of the magnetic PSD below

f . 2× 10−6 Hz is not known and (ii) the normal diffu-

sion approximation does not apply.

In Figure 4, we also show ∆Φ from the rigidity-

independent Φ model in Equation (6) assuming Φ1AU =

400 MeV, a constant Vsw, and η = 1.1. (Note that

our solar wind model has radial dependence, which

has non-negligible effects on ∆Φ for r . 0.3 AU.) At
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T & 10 GeV, our model and the rigidity-independent Φ

model differ by a factor of 2. At T . 10 GeV, the gap

between the two models is significant. In particular, ∆Φ

in the rigidity-independent case is over-estimated by one

order of magnitude at T ∼ 0.1 GeV.

Last, we remark that the rigidity dependence of Φ in

this work is different from Cholis et al. (2016), Corti

et al. (2016), and Gieseler et al. (2017). Here, we pre-

dict the increase of Φ from 1 AU to inner heliocentric

radii, whereas they fit the direct GCR measurements at

1 AU with the local interstellar spectrum of GCR us-

ing the rigidity-dependent parametrization of Φ1AU. In

particular, the rigidity-dependence of Φ in our model

stems entirely from GCR interactions with the inertial-

range turbulence. On the other hand, their rigidity-

dependent parametrization of Φ1AU is a mixture of all

possible sources of solar modulation, from the helio-

spheric boundary down to 1 AU.

4. PREDICTIONS

In this section, we show our results for the GCR inten-

sities and radial gradients in the inner heliosphere. In

Section 4.1, we compare our calculated GCR radial gra-

dients with the measurements from Helios and Pioneer

missions in the solar ecliptic plane within 5 AU from

the Sun. This is a check on our model vs. the rigidity-

independent Φ model. In Section 4.2, we show the GCR

proton and electron energy spectra inside 1 AU.

4.1. Radial Gradients

To check the validity and applicability of our im-

proved force-field model, we calculate the radial gradi-

ents Gr and compare them with the Gr measurements

of GCR protons at 0.3 AU < r < 1 AU (Marquardt &

Heber 2019) and GCR helium nuclei at 1 AU < r <

4.6 AU (McDonald et al. 1977).

The radial gradient Gr is defined as

Gr ≡
ln I (r2)− ln I (r1)

r2 − r1
, (17)

where I (r) =
∫ T2

T1
JE (T, r) dT is the integrated GCR

intensity over a range of kinetic energy [T1, T2] at the

heliocentric distance r. To obtain JE at r < 1 AU, we

use the force-field solution from Equation (3),

JE (E, r) =

(
E2 − E2

0

(E + ∆Φ)
2 − E2

0

)
JE (E + ∆Φ, 1 AU),

(18)

where JE (E + ∆Φ, 1 AU) is the GCR intensity at 1 AU.

Table 1 lists the measured Gr of proton (top group)

from Helios I and II missions during 1974–1978 (Mar-

quardt & Heber 2019) and Gr of helium nuclei (bottom

Table 1. Radial gradients of GCR protons (top group) and
helium nuclei (bottom group). The second column, Tnucleon,
denotes the kinetic energy per nucleon. In the last column,
the numerical values without and inside the parentheses are
based on the standard QLT treatment of κ‖ and the modifi-
cation of κ‖, respectively.

r Tnucleon Measured Gr Calculated Gr

[AU] [GeV] [% AU−1] [% AU−1]

0.3–1 0.250–0.700 2 ± 2.5 14.6 (7.4)

0.4–1 >0.05 6.6 ± 4 12.6 (6.2)

1–3.8 0.210–0.275 0 ± 4 9.2 (4.6)

1–3.8 0.275–0.380 2.5 ± 4 10.1 (4.9)

1–3.8 0.380–0.460 3.8 ± 5 10.9 (5.3)

1.25–4.2 0.210–0.275 4.1 ± 3.7 9.1 (4.6)

1.25–4.2 0.275–0.380 2 ± 4 10.1 (4.8)

1.25–4.2 0.380–0.460 1.3 ± 5 10.8 (5.3)

1.9–4.6 0.210–0.275 2.7 ± 4 8.7 (4.5)

1.9–4.6 0.275–0.380 2.5 ± 5 10.0 (4.7)

1.9–4.6 0.380–0.460 0 ± 5 10.7 (5.3)
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Figure 5. Calculated differential radial gradients Gr,diff of
GCR protons and electrons for T = [0.25, 0.7] GeV. Blue
solid lines indicate our results for the standard QLT treat-
ment. Red dashed lines indicate the rigidity-independent Φ
model. The green datum is the measured Gr of GCR pro-
tons of 2 ± 2.5% AU−1 between 0.3 AU and 1 AU obtained
from the Helios Experiment-6 (Marquardt & Heber 2019).

group) from Pioneer 10, Pioneer 11, and Helios I during

1973–1975 (McDonald et al. 1977). Both groups were

observed during the solar minimum at the end of the
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Figure 6. Predicted spectra of GCR protons (left) and electrons (right) at r = 0.1 AU. The blue solid lines indicate our
results. The red dashed lines indicate the rigidity-independent Φ model. The grey circles are the PAMELA proton and electron
observations with the error bars denoting the combined statistical and systematic errors, and the black dash-dotted lines showing
their model spectra (Adriani et al. 2013, 2015). Inset: the percentage change of GCR intensity from 1 AU to 0.1 AU.

Solar Cycle 20. In the last column for the calculated

Gr, the numerical values without the parenthesis are

based on the standard QLT treatment for κ‖ in Equa-

tion (12). Comparing them with the measured Gr, we

find that our results for the GCR protons for r < 1 AU

are ' 6− 12% AU−1 away from the measurements. Our

results for the GCR helium nuclei at 1 AU < r < 4.6 AU

are ' 5–8% AU−1 away from the measurements.

In Table 1, the numerical values of Gr inside the

parenthesis in the last column are based on doubling the

standard QLT treatment of κ‖ in Equation (12). This

choice is motivated by the observations in Palmer (1982)

showing that the observed proton mean free paths for

1 GeV < Tp < 20 GeV are approximately twice the

predicted values from the standard QLT, as discussed

in Section 3.4. Basing on this modification of κ‖, we

find that the calculated Gr for GCR proton and helium

nuclei agree well with the measurements.

In Figure 5, we show our calculations of differential

radial gradients, Gr,diff ≡ ∂ ln I (r)/∂r, for GCR protons

and electrons in the kinetic energy range [0.25, 0.7] GeV.

This set of calculations is based on the standard QLT

treatment of κ‖ in Equation (12). For a comparison,

we also show Gr,diff using the rigidity-independent Φ

model in Equation (6), assuming Φ1AU = 400 MeV and

η = 1.1. Within 1 AU, we find that Gr,diff of the rigidity-

independent Φ model is higher than Gr,diff of our model

by at least a factor of five. It is apparent that rigidity

independence of Φ leads to an over-modulation of the

low-energy GCR, especially as particles approach the

Sun.

Last, our analysis of Gr has combined measurements

from three different solar cycles: Gr from Cycle 20, the

GCR spectra at 1 AU from Cycle 24, and the magnetic

PSD from Cycle 25. This could potentially lead to an

inconsistency between the calculated and the measured

Gr. In particular, Gr is highly sensitive to the mag-

netic PSD and frequency break. The magnetic condi-

tion of the solar wind may be very different at the time

Gr were measured (1974–1978) and the time PSP took

data (2018–2019). A more consistent analysis can be

obtained in the near future once PSP and SolO release

the measurements of Gr and magnetic PSD from the

same solar cycle.

4.2. Galactic Cosmic Ray Intensity

In this subsection, we calculate JE for GCR protons

and electrons at r < 1 AU from the force-field solu-

tion in Equation (18). Throughout the calculation, we

have adopted the numerical values of ∆Φ from Figure 4.

We also used the dashed dotted model spectral lines in

Figure 6 as the input for JE (E + ∆Φ, 1 AU). Our cal-

culation of JE of GCR helium nuclei is presented in the

Appendix. (We note that the calculations shown in this

subsection and in the Appendix are based on the stan-

dard QLT treatment of κ‖ in Equation (12).)
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Figure 6 shows our results (blue solid lines) for the

GCR proton and electron energy spectra at r = 0.1 AU.

We see that the solar modulation accumulated from

1 AU down to 0.1 AU leads to no more than ' −16% of

GCR intensity reduction at 0.1 GeV . T . 10 GeV and

no more than ' −5% intensity reduction at 10 GeV .
T . 40 GeV. While the GCR spectra for 0.1 AU < r <

1 AU are not shown here, we have confirmed that the

spectra lie between the black and blue lines.

In Figure 6, we also show in red dashed lines the GCR

energy spectra from the rigidity-independent Φ model in

Equation (6), assuming Φ1AU = 400 MeV and η = 1.1.

We see that the red dashed lines reach ' −70% to −80%

at T = 0.1 GeV as compared to the blue lines of ' −10%

to −15% at the same T . The red dashed lines eventually

increase to the same level as the blue solid lines by T =

40 GeV, at which energy the solar modulation is already

negligible.

In summary, our calculations show that the modu-

lation in the inner heliosphere is modest. We demon-

strate that the GCR spectra down to 0.1 AU are close

to those measured at 1 AU. Our results also suggest

that the gamma-ray emission from the solar halo due to

electron GCR scattering with solar photons should be

higher than that of previous predictions.

5. DISCUSSION AND CONCLUSIONS

An important goal of in heliophysics is to understand

the propagation of charged cosmic rays toward the Sun

in the magnetically turbulent solar wind. In this paper,

we have presented an improved force-field model for cal-

culating the modulation potential energy and GCR in-

tensity in the inner heliosphere whenever the magnetic

PSD in the solar wind is known. The magnetic PSD

adopted in this study reflects the solar wind conditions

in the solar ecliptic plane during the solar minimum at

the end of Solar Cycle 24.

We show that the increase of the modulation potential

energy, ∆Φ, from 1 AU to inner heliocentric radii is

rigidity-dependent at kinetic energies T . 10 GeV due

to GCR interactions with inertial-range turbulence. At

10 GeV . T . 33 GeV, ∆Φ is independent of rigidity

due to GCR interactions with 1/f fluctuations. Overall,

we find a modest reduction of GCR intensity at low

particle kinetic energies in the inner heliosphere.

The same method can be applied to the GCR mod-

ulation in the solar ecliptic plane at solar maximum.

However, the magnetic spectral shape of the solar wind

at solar maximum could be quite different from that of

solar minimum. This is because the solar wind at solar

maximum is mostly slow-wind streams whereas the wind

at solar minimum is mixed, with fast- and slow-wind

streams (Tu & Marsch 1995). A slow-wind stream has

the frequency break occurring at much lower frequencies

than a fast wind or a mixed configuration (Bruno et al.

2009). PSP and SolO will provide measurements of the

total magnetic power and the changes of the spectral

break at solar maximum, which will allow us to evaluate

the corresponding solar modulation in the near future.

Our results will be important for comparing to direct

GCR measurements by PSP and SolO in the ecliptic

plane. They will also be important for comparing to in-

direct GCR measurements obtained by observations of

the inverse-Compton gamma-ray flux caused by GCR

electrons up-scattering solar photons. In that case, it

will be possible to probe GCR fluxes far outside the

ecliptic plane. It may be that solar modulation at the

high latitudes of the Sun is as small as we have predicted

for inside the ecliptic plane, in which case the gamma-

ray flux will be approximately symmetric around the

Sun. It might also be the case that modulation at the

high-latitude regions is larger than in the ecliptic plane,

in which case the gamma-ray flux will be brighter out-

side the plane.

Going further, it will be important to assess the im-

pact of coronal magnetic fields on GCR propagation.

Here, we have made predictions down to 0.1 AU in he-

liospheric radius, taking into account modulation in the

IMF but ignoring coronal magnetic fields. Ultimately,

we need predictions down to even smaller heliospheric

radii, both to understand the inverse-Compton emis-

sion from the solar halo and the emission from the disk

caused by hadronic GCR.

As a final note, although our improved force-field

model fits the limited data much better than the

rigidity-independent model, we emphasize that our

model is not complete yet. One missing piece of physics

is particle drift. First, because the drift velocity is

divergence-free and does not involve any wave-particle

scattering, particle drift could speed up or slow down

the transport of GCR toward the Sun, depending on

the charge sign of GCR and the magnetic polarity of the

Sun. Second, particle drift also enables GCR to move

between polar and ecliptic regions of the Sun. Both

factors are 3-dimensional effects which are beyond the

scope of the force-field model. Despite the lack of par-

ticle drift, we have shown that the improved force-field

model already provides predictions close to the Gr mea-

surements from Helios and Pioneer missions.

To further quantify the contribution of modulation

from particle drift, a comparison between our results and

the solutions from the full cosmic-ray transport equa-

tion is warranted. To this purpose, we encourage inner-
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heliospheric predictions of numerical cosmic-ray trans-

port models from the broader cosmic-ray community.
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APPENDIX
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Figure 7. Parallel diffusion coefficient of GCR helium nuclei
for heliocentric distances between 1 AU and 5 AU in steps of
0.5 AU.

GCR HELIUM NUCLEI

In this appendix, we show the numerical results of κ‖,

∆Φ, and JE (T, r) for GCR helium nuclei at 1 AU < r <

5 AU.

Figure 7 shows κ‖ of GCR helium nuclei as a func-

tion of kinetic energy per nucleon THe,n. Here, we have

extrapolated the numerical values of the magnetic PSD

and fb from Equations (8) and (9), respectively, assum-

ing they are valid at 1 AU < r < 5 AU.

Figure 8 shows ∆Φ per nucleon of the GCR helium

nuclei (solid lines) from our model. (Note that ∆Φ,

which is defined as Φ (T, r)−Φ (T, 1 AU), is negative for

r > 1 AU because larger r has smaller Φ.) As a compar-

ison, we also show ∆Φ from the rigidity-independent Φ

model in Equation (6), assuming Φ1AU = 800 MeV per

helium nuclei (i.e., Φ1AU = 400 MeV per proton inside

the helium nuclei) and η = 1.1.

Figure 9 shows the predicted spectrum (blue solid line)

of GCR helium nuclei at r = 3 AU from our model.

We use the black dash-dotted line as the input spec-
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Figure 8. Calculated change of rigidity-dependent Φ per
helium nucleon from 1 AU to radii r between 1.5 AU and
5 AU every 0.5 AU. As a comparison, we show the decrease
of rigidity-independent Φ for r = 1.5 AU (top dotted line)
and r = 5 AU (bottom dotted line).

trum for JE (E + ∆Φ, 1 AU) in the force-field solution

in Equation (18). (We note that below THe,n < 0.8 GeV,

the model spectrum provided in Marcelli et al. (2020) is

systematically lowered by 10− 15% with respect to the

PAMELA measurements. There have not been com-

pelling solutions to resolve this issue. For the simplic-

ity of the analysis, we picked the model line as the

input GCR spectrum at 1 AU.) We also show in red

dashed line the energy spectrum of GCR helium nuclei

at 3 AU from the rigidity-independent Φ model in Equa-

tion (6), assuming Φ1AU = 800 MeV per helium nuclei

and η = 1.1. We see that our result has a much lower

decrease of GCR intensity than that of the rigidity-

independent model for THe,n . 1 GeV.
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Figure 9. Predicted spectrum of GCR helium nuclei at
3 AU. The blue solid line indicates our result. The red
dashed line indicates the rigidity-independent Φ model. The
grey circles are the PAMELA helium nuclei observations with
the error bars denoting the combined statistical and system-
atic errors; the black dash-dotted line is their model spec-
trum (Marcelli et al. 2020). Inset: the percentage change of
the intensity of GCR helium nuclei from 1 AU to 3 AU.
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